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~SYNOPSIS

A-luminum-based P/M hand forgings and extrusions in twoAl-Zn-Mg-Cu alloys have been studied to evaluate the effects

~of powder processing variations on forging quality andproperties and extrusion properties. High quality hand

forgings with high strength and ductility have been produced
directly from hot pressed aluminum powder compacts without
an intermediate extrusion operation./

Among the MA58 forgings, 87 volume % of the forgings met
or exceeded SNT Class "A" quali~ty standards, while 71 volume
% of the MA39 met or exceedd-'>NT Class "A" standards.

P/M MA58 and MA39 'a-loy forgings achieved strength,
ductility and longitudinal toughness comparable to 7075-T6
hand forgings. These P/M forgings were resistant to stress

[corrosion cracking and exfoliation cor'rosion in accelerated
tests, of samples from 21! square hand forgings.

4Whilre neither cold compacting method nor green density
affected forging properties, preheat time and temperature
and° hot coinpressure had significant effects on forging
properties or quality. Increasing preheat time was detrimental
in both MA58 and-MA39, in the latter case due to Ostwald
ripening of Co2A19 constituent. Increasing preheat temperature
promotes more thorough compact degassing. Raising the hot

fcompacting pressure decreased cracking during forging and
netted increased properties.

">NThe processing conditions leading to maximized hand
forging properties are:

Cold press to at least 70% green density,U Peheat lhour at 1,000 F in dry argon.*
KHot press at 90 ksiJ
,Fbrge at a temperature appropriate for the specific alloy.,

H - .orge .by any standard hand forging press technique with
as much total reduction as possible. (

For preparing extrusion billets, either uniaxial or isostatic
cold compacting can be used in- generating extrusions with com-
parable properties.
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PHASE I - P/M PROCESS OPTIMIZATION

-INTRODUCTION

Of the commercial high-strength aluminum alloys currently

available, alloy 7075 and variants of 7075 have the best com-

binations of strength, stress-corrosion cracking resistance,

fracture toughness and ductility. Variations in desirable

combinations of properties can be obtained, but generally at

ultimate strengths of 75,000 psi or less.

An earlier Alcoa Research Laboratories (ARL) investigation

for the U.S. Army (1 '2'3 ) developed powder metallurgy alloys

having combinations of high strength (>7075-T6) and resistance

to stress-corrosion cracking which are unobtainable with

conventional aluminum products. Further, that same investi-

gation developed a P/M process for fabricating mill products

(i.e. extrusions) which have higher ultrasonic quality than

conventional mill products.

The emphasis in that investigation was on extrusions

J. because that process had a higher chance of success in

fabricating compacts than other fabricating processes, e.g.

rolling, forging, and impacting. The plate, sheet, and impacts

Iwere made- mostly from extruded stock. For large plate and

forgings, it is necessary to eliminate the intermediatef
extrusion; for this reason, Phase I of this investigation was

undertaken to optimize the processing conditions for producing

forgings from compacts without an intermediate extrusion operation.

41
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The results of Phase I will form the basis for the scale-up

in size which is a part of Phase III.

The vehicles for Phase I are two high strength Al-Zn-Mg-Cu

alloys, one with, and the other without, sizable additions of

ancillary elements. One is MA39 which has demonstrated good

combinations of strength and resistance to stress corrosion

cracking in earlier work at Alcoa and in the earlier Army

contract. The second alloy, MA58, is a powder metallurgy V

version of X7050, one of the most promising of the new alloys

when fabricated from ingot. Before registration with the

Aluminum Association, X7050 was designated MAI5. MA58 differs 1!
from X7050 in that the former contains oxygen.

Variables included in this program are:

Alloy
Cold Compacting Method
Cold Compact (green) Density
Preheat Time
Preheat Temperature
Hot Compacting Pressure
Forging Temperature
Forging Procedure
Amount of Hot Reduction

Several small investigations were added to this phase to-

develop other processing information of interest for the con-

current Phase II investigation and for the planned Phase III [
scale-up. These investigations included:

1. Determine if cold compacting method affects
extrusion properties.

2. Determine a technique for detecting melting [I
in P/M materials (Reported in Appendix I).

3. Fabricate M16 Receiver forgings from Phase I.
alloys (Reported in Appendix II).

---- ------
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, //OBJECTIVES

l 4termihe 'the processing conditions for optimum

forgeability and properties.

2, Determine the minimum cold compact density and

minimum hot compacting pressure that will yield acceptable

forgeability and properties.

PROCEDURE

1. Optimum Process for Forgings

Forgings were made by a piocess consisting of atomizing,

cold compacting, preheating, hot pressing (or coining), hand

forging, solution heat treating, quenching, and aging. The

.Ii processing conditions are discussed in connection with the

variables being evaluated.

A. Powder Preparation

The alloys shown in Table 1 were prepared by melting

and alloying to net approximately 1,500 pounds of the desired

ii alloy. Following a check of melt analysis and minor chemistry

adjustments, each alloy was atomized to yield powders having

the screen analyses shown in Table 2. After scalping through

a No. 50 (U.S. Standard) screen, two 500 pound batches of

each alloy powder were split and subsequently blended in 100

pound batches in a vee-blender for 30 minutes.

_ B. Cold Compacting

Using a 1,500 ton vertical press, the powders were

coldcompacted uniaxially in a steel die with butyl steprate
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for a die wall lubricant (Figuire 1). Cold compact densities

of 70% and 80% of theoretical density were obtained by cold

pressing the equivalent of 160 cubic inches of metal as powder

(16.32 and 16.44 pounds fov MA58 and MA39, respectively) into

tapered volumes of 229 or 199.5 cubic inches, respectively.

The resultant compacts were approximately 6" diameter x 8"

or 7" long for 70% of 80% cold density, respectively. To

supplement the information generated with uniaxial cold V
compacting, samples K1, K5, K7, K8, K9, and KI0 listed in

Table 3 plus qother compacts listed in Table 4 were cold

pressed by isostatic cold pressing using a wet bag process.

Isostatic compact green density was calculated from

powder charge weights and compact dimensions as determined H
with calibers and a rule having 1/64" graduations. Uniaxial

compact green densities were calculated from compact dimensions

and powder charge weight.

Powder cold compacting pressure vs compact density for

uniaxial and isostatic compacting of MA58 and MA39 alloys is

summarized in Table 4. In Figure 2, uniaxial (mechanical

compacting in a tapered die) compacting-is compared to isostatic

for the two alloys, for nominalily 6" diameter compacts. Pressure

attenuation from the ram surface through the compact and die wall

friction in uniaxial pressing result in the less efficient use of

applied pressure than with isostatic pressing.

The effect of natural aging time (after atomizing) on the

pressure versus cold compact density relationships for MA58 FI
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and MA39 is shown in Figures 3 and 4, respectively. The

shift in pressure versus density is probably the result of

the powder becoming stronger and more resistant to deformation

(by natural aging) with increased time after atomizing.

The effect of compact diameter on cold compact density

[for isstatic pressing is shown in Figures 5 and 6, including

information on 11" diameter cold compacts . Increasing

P ~ compact diameter appears to lower green density slightly for

compacts pressed at the same pressure. However, the differences

in compact density relative to compact size are small and might

Ube overshadowed by the effect of powder natural aging (e.g.

Figures 3 and 4).

.C-. Preheating

The compacts were preheated in a sealed muffle furnace,

the -mUffle having a volume of 38 cu. ft. The atmosphere was

argon flowing at 300 CFH from a tank of liquid argon. Preheat

times were nominally 1, 5, and 20 hours, and temperatures

were 900, 950, and 1,000 F.

To determine the effect of repeated door openings on the

preheating atmosphere, analyses of furnace exit gas shown in

II Table 5 were determined. After 4.5 hours at 950 F without door

openings with 6 compacts in the furnace, oxygen was at a low

level and N2 was the principle contaminant in the argon atmos-

oIt phere. Opening the furnace door diluted the argon to approxi-

mately 50%, with air (of 80% N 2, 20% 02) making up the balance

of the furnace gas. After closing the door, the nitrogen and

7-
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oxygen were diluted by argon, but the proportion of N2 to

02 increased. This suggests some oxygen consumption in the

furnace, by the powder compacts or the furnace muffle (stainless

steel). No evidence of appreciable compact oxidation due to

door openings has been observed (see section IB 3., Results

and Discussion).

D. Hot Compacting

Immediately upon completion of preheating, the compacts

were hot pressed in a 700 F die (Figure 7) at 30, 60, and 90 ksi,

the pressure being held for one minute. There were ejected from

the die and air cooled.

E. Scalping

The compacts were scaped to cylinders 6.1" diameter x

4.8" long by removing approximately 0.1-0.2" from the radius and

0.2" from the length.

Densities of selected scalped compacts were measured by the

weight in air - weight in water method. No billet density

differences were observed for variations in hot compact Oressure,

preheat temperature or green density (see Table- 6 and 7). As

little as 30 ksi hot compact pressurc after a billet preheat at

900 F was sufficient to raise the billet to 100% of theoretical

density. L.

F. Forging

The P/M billets were reheated and forged on a 3,000 ton

hydraulic press at Alcoa's Cleveland Works. Heated (360-700 F)



cogging dies were used with a 3" edge radius and no lubricant

(dies occasionally salted to control metal sticking). The

forging procedures used are listed in Tables 3, 8, 9, and 10,

and illustrated in Figures 8 to 11. The forgings listed in

Table 8 explored metal working temperatures from 540 F to

750 F. From the visual quality of the resultant 2" x 2" x 30"

forgings, metal working temperatures of 600 and 700 F were

chosen for MA58 and MA39, respectively. These metal temperatures

were used in all subsequent forging. Various working methods

and amounts of..reduction were used on the forgings listed in
.1
1 Table 9 to determine the effect of the.se parameters on the

properties of P/M forgings. The forging methods used on the

]I specific "B" forgings as well as the final forging sizes are

listed in Table 9.

The remaining forgings in Tables 3 and 10 were worked by

jI drawing (Figure 8) in the billet pressing direction to 2" x 2"

x 30" long.

G. Forging Inspedtion

1In preparation for the visual inspection of the forgings,

each was subjected to a sodium hydroxide-nitric acid etch

sequence to aid crack detection. The forgings were then visually

inspected for number and severity of obvious end, corner and face

cracks.

HI Ultrasonic inspecuion was conducted to determine the extent

of end and face cracking and to rate the quality of the uncracked

EUi



portion of each forging relative to SNT Class "A" Standards.

In the uncracked portion of each forging, the inspection

noted ultrasonic noise and the location and size of isolated

discontinuities. The ultrasonic test was conducted using a

10 MHz, 3/4" diameter lithium sulfate search unit and

standardizing for a 2.0" trace-t-peak indication from the

3-0075 (No. 3) reference block (3/6411 diameter flat bottomed

hole at a metal distance of 3/4"). A Sperry UM721 Reflectoscope

was used for the test. Each hand forging was inspected by send-

ing the ultras.onic waves through two orthogonal directions. The

volume of metal meeting SNT Class "A" Standards was computed and L
recorded as "percent metal recovery."

H. Heat Treatment, Sampling

The forgings listed in Tables 3, 8, and 10 were heat [
treated as 2-inch square hand forgings. The MA58 and MA39

alloy forgings were solution heat treated at 890 F and 920 F,

respectively, for 2 hours and cold water quenched. These [
temperatures were selected from other investigations on X7050 (4)

and MA39 (Appendix I). After 7 days natural aging, the forgings

were artificially aged by heating at 100 F/hour to 250 F, then

holding 24 hours at 250 F. The MA58 and MA39 forgings were

further aged 8 and 16 hours, respectively, at 330 F by heating 3
from room temperature to 330 F at 100 F/hour, holding for the

times shown. Tensile and notched tensile specimens were taken

as shown in Figure 12.
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The forgings listed in Table 9 were sampled initially by

cutting one-inch thick slices from each 3.25-inch square,

2.0-inch square, or 1.25-inch square forging, as shown in

-. Figures 13, 14 and 15. These one-inch thick slices of MA58

and MA39 alloy forgings were solution heat treated at 890 F

and 920 F, respectively, held 2 hours and cold water quenched.

After 6-7 days natural age, these slices were artificially

faged by heating at 100 F/hour to 250 F, holding 24 hours at
250 F. The MA58 and MA39 samples were further aged by heating

at 100 F/hour from room temperature to 330 F and held 8 and

16 hours, respectively, at 330 F. Tensile and notched tensile

specimens were taken from the one-inch thick slices as shown

Ii.. in Figures 13, 14 and 15.

Exfoliation and transverse stress corrosion samples were

II taken at locations shown in Figure 16 for the forgings listed

in Table 11. These forgings represent the optimum processing

conditions from considerations of forging quality, tensile and

jj notched tensile properties. The exfoliation test on panels

shown in Figure 16 was a Modified ASTM Acetic Acid-Salt Inter-

Elmittent Spray at 120 F The transverse tensile bars for

stress corrosion cracking test were stressed at 42 or 25 ksi

and exposed to a 3-1/2% NaCl solution by alternate immersion

for 84 days
(6 ).

The response of MA58 and MA39 to second step aging was

Sd determined on the forgings listed in Table 12 by re-heat

treating 2" square x 8" long forging sections, cold water

a-I
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quenching, natural aging 6 days, and artificial aging 24 hours

at 250 F plus 2, 4, or 8 hours at 330 F (as shown in Table 12).
The oxygen content of selected 2" square forgings that

represent various preheat conditions was determined by neutron

activation analysis. These forgings are listed in Table 13.

I. Data Analysis

Initial assessment of the effect of processing variables

on mechanical properties was accomplished by averaging properties

of comparable forgings under each value of a primary processing

variable. An example of this comparison is shown for the effect

of green density on properties (Table 1, Appendix III). These

data compilations are shown in Appendix III for comparisons

of the effects of green density, preheat temperature, preheat

time, and hot compacting pressure on tensile properties of

P/M hand forgings.

The statistical data analysis for primary variable com-

parisons consisted of determining averages and Z (deviations)2

for each primary variable and testing for significance of dif-

ferences between primary variables with a "Students' t test."

A probability of 95+% for a single-tailed test was considered

a significant difference if the samples were considered

representative. These analyses are shown in Tables 1 to 18, L
Appendix III.

An analysis of variance to determine the possible inter-

actions among processing variables was conducted on Tables 41,

42, 44, 45, 47, 48, 50, 51, 53, 54, 56, and 57 using an "F"

a,

' I



It test to determine the significance of trends and possible

1interactions.. A 95+% probability was considered to be a
significant variance by this analysis.

71
II. Effect of Cold Compacting Method on Properties

of Extrusions

A. Extrusion Preparation

The alloys shown in Table 14 were prepared by melting

and alloying to net approximately 150 pounds of MA39 and 300

J pounds of MA58. After a check analysis and minor chemistry

adjustments, the MA39 was atomized to yield fine powder having

11 the screen analysis shown in Table 15. The MA58 was atomized

using two conditions to yield fine and coarse powders, as shown

in Table 15. The chemical analyses of the MA58 extrusions in

Table 14 show that two sizes of powder can be produced from the

same melt with only minor variations in alloy chemistry.

After scalping through a No. 100 (U.S. Standard) screen

jJ (MA39 and MA58 fine powder) or No. 25 screen (MA58 coarse powder),

the powder was compacted to 75% of theoretical density by

uniaxial and isostatic compacting methods. The resultant compacts

were approximately 6" diambter x 8" long. The compacts were

_ii preheated in dry flowing argon for 4.5 to 5.5 hours at 950 F.

Immediately following preheat, the compacts were hot pressed to

100% density in a heated (700 F) 6-3/8" diameter extrusion

it cylinder by pressing against a blind die at 90 ksi pressure and

then extruded (direct) into the section illustrated in Figure 17.
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B. Heat Treatment, Sampling

Sections of extrusions were heat treated in a dry air

atmosphere, for 2 hours at 890 F (MA58) or 920 F (MA39) and

quenched in cold water (200 F/sec. in the temperature range [
750-550 F). After 7 days natural aging the extrusions were

artificially aged 24 hours at 250 F plus 8 hours at 330 F (MA58) L
6r 16 hours at 330 F (MA39). Heat-up rates of 100 F/hour were

used for all aging treatments.

Longitudinal and transverse tensile and notched tensile

specimens for -comparison of uniaxial and isostatic compacting

methods were machined from the extrusion as shown in the sampling

layout in Figure 17. I

RESULTS AND DISCUSSION

I. Optimum Process for Forgings

A. General Comments on Quality and Properties

The initial assessment of forging quality was made on

the basis of visually detected cracks on the ends, corners and

faces of the hand forgings to allow selection of forging

temperature and forging procedure for subsequent fabrication.

Since ultrasonic inspection and mechanical properties provide L

a more thorough judgment of metal quality, the quality rating

discussion that follows is based principally on the results of

ultrasonic inspection and mechanical properties of forgings.

It should be noted that the results of the visual inspections

L
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M1n either follow the trends indicated by ultrasonic quality and

properties, or show no trend as a function of a processing

variable.

The volumes of the P/M billets and the volume of the

unsound portion of each forging are presented in Tables 16

and 17. The percent sound material in each forging is

summarized in Tables 17 and 18 for all forgings prepared.

The longitudinal and transverse tensile and notched

tensile properties of P/M MA58 and MA39 forgings are listed

in Tables 19 and 20, respectively. The processing conditions

that describe each forging are shown in Tables 3, 8, 9, and 10.

A number of general observations can be made in examining

the forging quality data to be discussed in following sections.

z H Metal recovery and ultrasonic quality were quite high.

Averaging over all the P/M hand forgings, 82% of the

d forgings (by volume) passed SNT Class A quality standards. This

compares with 73% over all metal recovery for 2" diameter

extrusions prepared from P/M billets in Phase II of this program.

H! The portions of the forgings that showed evidence of

cracking were generally associated with ends of the compacts,

IJ particularly the end of the compact opposite the ram that

experienced little metal movement in hot pressing. In addition

[to scalping the billet more severely, it might be possible to

eliminate this problem by artificially moving the metal during

the hot pressing, as one might by pressing against a shaped

rather than a flat blind die.

II

L~
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After eliminating the obvious cracked portions of each

forging, 98% by number (93 out of 95) of the forgings met or

exceeded the ultrasonic inspection standards for SNT Class "A"

metal quality.

The average ultrasonic noise level noted in the uncracked

portions of all the P/M forgings was at a low level relative

to the level commonly found in forgings from commercial ingot.

The noise ranged from 5 to 12% of the response of a No. 3

reference standard. Because of the low level of noise

observed, values for each forging are not reported here.

The generally high quality level makes the effects of pro- V
cessing variables on forging quality somewhat unclear, as may

be seen in the following discussion.

B. Effects of Process Variables on Quality
and Properties

1. Effect of Alloy on Forging Quality

and Properties

By nearly every measure of forging quality, MA58

alloy forgings were superior to forgings of MA39 alloy. Summing

over all powder processing and metal forging conditions, the

metal recovery for MA58 was 87% (volume of forging meeting SNT

Class "A" quality standards) compared to 71% metal recovery for

MA39 alloy (Table 21). V
The only quality factor that favored MA39 alloy was in the

number of isolated discontinuities detected ultrasonically [

(Table 21). Over all the powder processing and forging conditions
L

V
V

V'
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examined, MA58 alloy averaged 2.2 discontinuities per forging,

while MA39 averaged 0.5 discontinuities per forging. It is

important to note that the isolated defects found in forgings

fl of both alloys are small and spaced so the uncracked forging

exceeds SNT Class A quality standards.

The average properties of all MA58 and all MA39 forgings

are summarized in Table 22.

11 The average tensile strengths are nearly identical for

both alloys in both longitudinal and transverse directions.

However, the MA58 alloy forgings have higher yield strength,

H! elongation and notched tensile strength:yield strength ratio

(NTS/YS) in both test directions.

2. Effect of Cold Compacting Variations on
LForging Quality and Properties

a. Green Density

iSumming over both alloys and all processing

conditions (Table 23), a cold compact density of 70% is

Islightly favored over 80% for metal recovery. This advantage

is not statistically significant by a t-test.

The forgings from 70% cold density compacts had twice

as many isolated discontinuities as forgings from 80% density

cold compacts, while still meeting SNT Class "A" quality

Ii standards in the uncracked center portion of each forging

• (Table 23).

The effect of cold compact density on properties of

Uforgings is summarized in Table 24. From the summary table,

LI

LI

F
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it can be seen that only a few scattered significant

differences in properties exist. Seventy percent green

density was favored slightly for MA58 transverse properties,

although only the tensile strength and yield strength

differences are statistically significant. Eighty percent

green density gave slightly higher ]ongitudinal properties

in MA58, but only the elongation difference shown statistically

favors 80% green density.

For MA39 alloy forgings, the only property differences

shown in Table- 24 are in transverse elongation and notched

tensile strength. The differences between 70 and 80% are

not statistically significant.

Overall, it is seen that compact green density has no

practical effect on the properties of P/M hand forgings.

b. Cold Compact Method

The results of inspections of forgings for

determining the effect of cold compacting method on forging

quality are presented in Table 25.

There is no significant difference in metal recovery between

forgings prepared from isostatic and uniaxial cold compacts;

both methods yield 78% over-all metal recovery for the processing

conditions represented. F'
Forgings from uniaxial cold compacts had slightly more

isolated discontinuities than forgings from isostatic cold compacts.

L

V.
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The effect of cold compacting method on properties of

forgings is shown in Table 26.

L For MA58 forgings, notched tensile strength:yield strength

ratio in both test directions favors isostatic compacting,

while transverse elongation favors uniaxial compacting. The

transverse NTS/YS and elongation are the only MA58 properties

with statistically significant property differences.

HFor MA39 forgings, the longitudinal NTS/YS favors

uniaxial compacting, while the transverse NTS/YS favors

isostatic presping. However, none of the property differences

noted statistically favor one compacting method over the other.

Overall, isostatic cold compacting is comparable to uniaxial

cold compacting.

! 3. Effect of Preheat Variations on Forging
Quality and Properties

F a. Preheat Temperature

The effect of preheat temperature on forging

It quality is presented in Table 27. The trend shown indicates a

F' general improvement in metal recovery with increasing preheat

temperature.

The intermediate preheat temperature results in forgings

with the least number of discontinuities. This might be

ii related to melting these alloys above 950 F to generate dis-

continuities wibhout resulting in forging cracks.

LI The effect of preheat temperature on properties of forgings

is summarized in Table 28.
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For MA58 forgings, 1000 F preheat temperature gives

the highest longitudinal and transverse elongation and

notched tensile strength at comparable tensile and yield

strengths for the 900-1000 F preheat temperature range. This

advantage for .000 F preheat temperature is statistically

significant for MA58.

For MA39 forgings, the 1000 F preheat was the highest

strengths and elongations (both directions) and the highest

transverse notched tensile strength. However, only the

longitudinal t.ensile and yield strength (1000 vs. 900 F)

and the transverse notched tensile strength (900 or 1000 vs.

950 F) differences are statistically significant.

Overall, the use of 1000 F preheat appears to significantly

improve forging properties.
(i

b. Preheat Time

The role of preheat time in forging quality is

presented in Table 29. Summing over all the variables, 20 hour L
preheat does net slightly better average me"*al recovery.

The 20 hour preheat netted forgings with 1/3 the number of

isolated discontinuities of either the 1 or 5 hour preheats.

The effect of preheat time on properties of forgings is

summarized in Table 30.

For MA58 forgings, one-hour preheat yields the highest

transverse elongation and tensile, yield and notched tensile

strengths in all directions. The one-hour preheat is statisti-

. L!
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cally favored for notched tensile strength in both directionsA ' and for transverse tensile strength.

The one-hour preheat is statistically favored for MA39

notched tensile strength in both directions. The other

properties determined show the one and five hour preheats to

be generally comparable.

4 Overall, the one-hour preheat is favored over longer

preheats times for optimum toughness.

c. Interaction of Preheat Time and
Temperature

Neutron activation oxygen analyses were run on

compacts preheated at 900 to 1000 F to determine if the

decreasing toughness wil;h increased preheat time could be

4 attributed to increased oxygen, present as MgO or MgAI20

(spinel). The results of oxygen determinations are presented

in Table 31 for forgings made from MA39 and MA58 compacts

preheated various times. Within the precision of the measure-

ment, no increase in oxygen occurs between the 1 and 20 hour

preheat.

The coarsening of the Co2A1 9 phase during compact preheat

is shown in Figure 18 for 1 and 20 hour preheats at 1000 F and

by the measurements presented in Table 32. The average particle

.1 diameter doubled during a 20 hour preheat at 900 F and increased

-i by 2.3 times during 20 hour at 1000 F. The diffusion rates

necessary for this Ostwald ripening strongly suggest predominantly

high diffusivity path diffusion (e.g. grain and subgrain boundaries).
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The effects of average particle diameter and interparticle

spacing on longitudinal and transverse NTS/YS are shown in

Figures 19 and 20, respectively. The NTS/YS in both directions

decreases with increasing I-P spacing or average particle

diameter. Clearly, minimizing preheat time for alloys with

appreciable Co (and perhaps Fe a;.d Ni) is desirable to main-

tain optimum toughness.

Surprisingly, the 1000 F preheat generally results

in higher toughness than 900 F preheat (see Table 28) in spite

of coarser Co2Al9 after the higher temperature preheat (see

Table 32). Apparently the higher temperature more thoroughly

degasses the green compact, resulting in a hot pressed compact

with less total gas content. The net effect of higher preheat

temperature, then, is better forging toughness even in the

presence of Ostwald ripening of constituent.

4. Effect of Hot Compacting Pressure on

Forging Quality and Properties

The effect of hot compacting pressure on the quality

of P/M forgings is presented in Table 33. The general trend

noted is improving metal recovery with increasing hot compact

pressure. The greatest percentage improvement in metal recovery

is had in going from 30 ksi to 60 ksi hot compact pressure,

especially for alloy MA39.

Summing over a variety of processing conditions, the

difference in metal recovery between 30 ksi and 60 ksi hot

compact pressure is statistically significant, while the

difference between 60 ksi and 90 ksi is not significant.
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The 60 ksi hot compacting pressure does result in more

discontinuities than either 30 or 90 ksi. Apparently the

material lost to cracks with 30 ksi hot compacting pressure

is uncracked at 60 ksi, but contains numerous isolated dis-

continuities. At 90 ksi, this material is uncracked and

relatively free of discontinuities. In spite of the number

of discontinuities noted at 60 ksi, these forgings still all

pass SNT Class "A" Standards.

The effect of hot compacting pressure on properties of

forgings is summarized in Table 34.

For MA58 forgings, 90 ksi hot compacting pressure yields

the highest notched tensile strength and elongation. Only the

difference in transverse elongation between 90 ksi and 30 ksi is

statistically significant.

For MA39 forgings, 90 ksi hot compacting pressure gave

the highest transverse notched tensile strength and elongation,

while 60 ksi was best for longitudinal elongation and notched

tensile strength. None of the differences in elongation or

-J notched tensile strength noted from Table 34 are statistically

significant. The forgings hot pressed at 60 ksi did have

statistically significant higher transverse strength than was

the case for 90 k:i. None of the other property differences

A shown are significant.

The effect of hot compacting pressure on NTS/YS and

percent metal recovery (see Table 34) is shown in Figure 21.

Ninety ksi hot compacting pressure yields the highest NTS/YS in

forgings.

4-
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The use of 90 ksi hot compacting pressure is presently

preferred to achieve maximum properties from forgeable P/M

compacts. This variable must be evaluated further in Phase III

with the expectation of finding that 60 ksi may be adequate in

practice.

5. Effect of Forging Technique Variations

on Forging Quality and Properties

a. Metal Temperature

For MA58 alloy, visual quality rating (Table 35)

shows minimized edge and face cracking for 600 F forging tempera-

ture. A temperature range of 500-600 F for metal working was

selected for all subsequent forging of MA58. For MA39, similar

visual quality rating (Table 35) shows minimized face and edge

cracking for 700 F forging temperature. A temperature range of

600-700 F for metal working was selected for all subsequent

forging of MA39.

The effect of forging temperature on metal quality is noted

in Table 36. In terms of metal recovery, the optimum metal

working temperature is a function of alloy content. The MA58

alloy forgings gave the best metal recovery when worked from

550 to 600 F. In practice, metal temperatures from 500-600 F

were used in working MA58.

The MA39 forgings gave the best metal recovery when worked

at 650 to 700 F metal temperature. In practice, a metal

temperature range of 600 to 700 F was used for forging MA39 alloy.
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The effect of forging temperature on properties of P/M

hand forgings is shown in Tables 37 and 38.

For MA58 alloy, the temperature range from 550 to 750 F

yields desirable longitudinal properties, with 600 F and 700 F

having particularly good combinations of elongation and NTS/YS.

! I in the transverse direction, the 550-700 F temperature range

(excepting 650 F) has the best NTS/YS, while 650 F has the

best elongation. Considering properties in both directions,

p the temperature range from 600-700 F appears optimum for MA58

alloy.

For MA39 forgings, 700 F forging temperature gives optimum

transverse elongation and NTS/YS, while 750 F has a longitudinal

elongation advantage. Since forging recovery drops off

drastically at 750 F (Table 36) forging at 700 F for MA39

appears best.

b. Forging Procedure

The effect of forging procedures and amounts of

reduction on forging visual quality are shown in Table 39.

I Using minimized face and edge cracking as the principle quality

criterion, a "draw" operation (Figure 8) for both MA58 and

MA39 alloys gave the best forging quality. For MA58 alloy, an

"A upset and draw" operation (Figure 9) gave nearly the same

quality as a simple draw operation.

The metal quality ratings as a function of type and amount

of working are presented in Table 40.
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V
For both MA58 and MA39, increasing amounts of work in

going from a 3.25" square bar to a 1.25" square bar results

in improved average recovery. However, for MA58, the differences

in recovery are not statistically significant. For MA39, the

metal recovery improvement with increased work is significant.

The different forging operations (i.e. draw, A upset and

draw, etc.) netted slightly different average metal recoveries

for both alloys, but the differences in recovery are not

statistically significant.

"A" upset- and draw forging, while netting the best metal

recovery, gave forgings with more isolated discontinuities for

MA58. For MA39 alloy, A or A-B upset and draw forgings had the

most discontinuities.

The amount of end cracking was least severe for the A or

A-B upset and draw operations for both MA58 and MA39 forging

operations, as shown in Figures 22 and 23, respectively. Thus

the severity of end cracking is seen to run contrary to the

number of discontinuities.

The effects of deformation procedure on properties of MA58

and MA39 forgings are shown in Tables 41 and 42, respectively.

Only minor differences in elongation and NTS/YS will be noted

in examining the properties as affected by deformation method.

-None of these differences are statistically significant for

either alloy. Any of the deformation methods used will yield

nearly equal properties.
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The effects of amount of deformation on properties of

MA58 and MA39 forgings are shown in Tables 41 and 42,

respectively. For both alloys, tensile and yield strength

increase with increasing amounts of extension in working. This

increase in strength is statistically significant for MA58

longitudinal YS and transverse TS and YS, and for MA39 longi-

tudinal TS.

Of greater significance is the good longitudinal elongation

and NTS/YS with as low an extension ratio (L = forging length/

billet length)..of 2.8, as shown in the properties of the

T 3.25-inch square forgings for both MA58 and MA39. Either the

hot pressed compact has favorable properties, or only small

amounts of reduction are required to generate good properties.

Tl This small amount of reduction was sufficient to generate con-

siderable anisotropy, notably in NTS/YS.

Small improvements in longitudinal NTS/YS are gained with

increased reduction for MA58 alloy, but elongation in all

directions and transverse NTS/YS are not significantly affected

by increased reduction. Increased reduction in MA39 forgings

does not appreciably affect elongation or NTS/YS in either test

direction.

Overall, since increased reduction does improve strength

with possible NTS/YS improvements, optimum forging practices

should allow as much reduction in section as possible. For

hand forgings, this would mean starting with the largest possible

billet size.

I
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6. Effect of Process Parameter Interactions
on Forging Quality and Properties

a. Interactions of Alloy, Green Density,
Preheat Time and Temperature on
Forging Quality and Forging Properties

The above interactions are shown quantitatively

in Table 43 and qualitatively in Figure 24. For MA58 alloy

forgings, there are no appreciable interactions among the

above parameters in metal recovery. Eighty percent green

density does result in more severe forging end cracking

(Figure 24) but fewer ultrasonic discontinuities.

For MA39 alloy, 1 hour preheat with 70% green density

gave metal recovery equal to 20 hour preheat for 80% green

density, regardless of preheat temperature. Eighty percent

green density gave forgings with fewer discontinuities. None

of these process interactions had any effect on the severity

of end cracking for MA39, as seen in Figure 24.

The effect of the above interactions considered in Tables 44

and 45 shows no property vs. process parameter trends not already

noted in the discussion of primary variables.

b. Interactions of Alloy, Green Density, LJ

and Hot Ccmpacting Pressure

The above interactions on forging quality are V

the subject of Table 46. For MA 58 alloy forgings, no inter-

actions resulted in quality trends contrary to those seen

earlier in the single parameter comparisons.

For MA39 alloy, an interaction between hot compact pressure

and green density results in the metal recovery reaching a peak

at 60 ksi for 80% green density. v
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The effects of the above interactions on forging properties

are considered in Tables 47 and 48. The significance of alloy

on yield strength and elongation noted previously is seen here,

with MA58 having higher Y.S. and elongation than MA39 for the

longitudinal direction. The yield strength difference is

8 largely the result of the aging practice difference, with the

MA39 having a 16-hour second step age vs. MA58 having an 8-hour

second step age. It appears that there is no important inter-

action of green density and hot coin pressure.

c. Interaction of Cold Compact Method,
Hot Compact Pressure and Alloy on
Forging Quality and Properties

No trends in metal quality contrary to the

single parameter comparisons were observed due to the above

interactions (see Table 49).

The effect of the above interactions on mechanical

properties are considered in Tables 50 and 51. The following

jj! interactions were observed:

-- (1) Longitudinal tensile strength: MA58 favors
uniaxial compacting; MA39 favors isostatic
compacting.

(2) Longitudinal NTS/YS: MA58 favors isostaticI. compacting; MA39 favors uniaxial compacting.

Since the sample size involved in these interactions is

small, it is possible that the small difference noted may be

][ due to random property variations. Since the differences

between properties is small, the differences may not be prac-

tically significant.

j
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d. Interaction of Preheat Time and
Temperature on MA58 Forging Quality
and Properties

No trends contrary to the single parameter

comparisons were observed due to the above interactions (see

Table 52).

The effect of the above interactions on mechanical properties

are considered in Tables 53 and 54. The trends in properties vs.

process parameters are in agreement with previous observations

noted in the discussion of primary process variables, excepting

the unusually .high transverse NTS/YS for the 1 hour at 900 F

preheat. This value may be due to extreme experimental scatter.

e. Interaction of Preheat Temperature,
Hot Compact Pressure and Alloy onForging Properties

No trends contrary to the single parameter

comparisons were observed due to the above interactions (see

Table 55).

The effect of the above interactions on mechanical properties

are considered in Tables 56 and 57. The only significant inter-

action is one observed in longitudinal NTS/YS. MA58 forgings V
preheated at 1000 F have optimum NTS/YS, while MA39 forgings

slightly favor 950 F in the longitudinal direction and strongly

favor 1000 F in the transverse direction. Since the sample

size involved in this interaction is small, these interactions

will be studied further in Phase III.

7. Effect of Processing Variations on
Exfoliation Resistance
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st . The 2" square forgings listed in Table 11 were

exposed to two weeks in the MASTMAASIS accelerated exfoliation
.,i}test(5 ) .

No evidence of exfoliation was observed in the MA58 forgings,

with only pitting type attack observed, as shown in Figures 25

and 26. Sample location in the forging had no apparent effect

on depth of corrosion. However, higher green density or higher
ii

.1 hot compacting pressure both result in increased maximum pitting

B depth of attack (see Tables 58 and 59) for alloy MA58.

While only pitting attack was visually observed in the

fl MA39 forgings (somewhat more pronounced than MA58), there was

evidence of slight undermining pitting in the MA39 forgings.

Further, the MA39 forgings showed increased pitting depth of

attack with increased preheat time as seen in Tables 58 and

59, and a lesser number of pitting locations- observed in

Figure 27 for the five hour preheats. This may be the result

of Ostwald ripening of Co2A19 in MA39 (shown in Figure 18),

leading to fewer and further spaced locations for preferential

corrosion. Lower hot compacting pressure decreases the maximum

depth of pitting attack (Table 59) and increases the number of

pitting locations (Figure 28).

8. Effect of Processing Variations on

Stress Corrosion Cracking Resistance

The forgings listed in Table 11 were subjected to

stress corrosion cracking tests. All specimens survived 84

7days in A.I. test with no confirmed stress corrosion cracking
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failures. The Ostwald ripening of Co 2A19 observed in MA39

apparently had no effect on the stress-corrosion cracking

performance of MA39.

Since these MA58 and MA39 forgings have mechanical

properties comparable to 7075-T6 forgings with immunity to

exfoliation and stress corrosion cracking, either of these

alloys would represent an improvement over 7075-T6 for hand

forgings.

9. Second Step Aging Response of

.P/M MA58 and MA39 Forgings

The effect of second step aging time at 330 F on

tensile properties of MA58 is shown in Table 60 and Figure 29.

The second step age used for the bulk of the testing of MA58

forgings, 8 hours at 330 F, is about 4 ksi below the maximum,

longitudinal yield strength for these MA58 forgings.

The effect of second step agiag time at 330 F on tensile

properties of MA39 is shown in Table 61 and Figure 30. The

temper used for the bulk of the testing of MA39 forgings, with

a second step age of 16 hours at 330 F, is more than 15 ksi

below the maximum longitudinal yield strength capability of

MA39 forgings.

II. Effect of Cold Compacting Method o c'roperties

of MA58 and MA39 Extrusions

For MA58 extrusions from both fine (83% -325 mesh) and

coarse ( .?% -325 mesh) powder sizes, the longitudinal elongation

and notc:e d tensile strength to yield strength ratio favor
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isostatic compacting (Table 62). The elongation for the fine

powder size in the transverse direction favors uniaxial com-

pacting, as does the ti, sverse NTS/YS for the coarse powder

size. When the data for the two MA58 powder sizes are grouped

together, only the difference in longitudinal NTS/YS is

statistically significant by a t-test (Table 63).

For MA39 extrusions, elongation and NTS/YS in both test

directions favor uniaxial compacting. The differences are not

statistically significant by a t-test (Table 62).

Overall, isostatic cold compacting is comparable to uniaxial

cold compacting. This is consistent with the results of the
comparison of hand forgings made from isostatic and uniaxial

compacts.

SUMMARY

1, High quality hand forgings can be made from compacts

of atomized high strength Al-Zn-Mg-Cu alloys without an inter-

*mediate extrusion operation.

-m 2. An Al-Zn-Mg-Cu alloy without ancillary insoluble

elements (MA58) had better forgeability, ductility, and tough-

ness than an alloy containing insoluble additions (MA39).

3. The general level of recovery was high for hand

forgings with 87 volume % of MA58 and 71 volume % of MA39

meeting SNT Class "A" Standard.

4. The effect of increasing green density from 70 to 80%

on quality and properties was not significant.

I-
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5. Increasing preheat temperature from 900 to 1000 F

increased forging quality, ductility and fracture toughness.

6. Increasing preheat time from 1 to 20 hours increased

forging quality but decreased fracture toughness.

7. Increasing hot compacting pressure from 30 ksi to

90 ksi increased forging quality, fracture toughness and

transverse ductility.

8. Optimum forging temperature ranges from 550 to 700 F,

depending on alloy.

9. While working procedure has no significant affect on

forging quality or properties, increasing amounts of work improves

forging quality and strength.

10. The following powder processing conditions are recommended

to maximize forgeability, forging properties and quality:

a. Cold press to more than 70% green density.

b. Preheat for 1 hour at 1000 F in flowing dry argon.

c. Hot press at 90 ksi.

d. Scalp, taking heavy cuts at the compact ends.

e. Forge by any standard working procedure at a
temperature suitable for the alloy, with as
much total reduction as possible.

11. Minimum processing conditions that yield acceptable

forging properties are:

a. Cold press to 70% green density.

b. Preheat 1 hour at 900 - 1000 F.

c. Hot press at 60 ksi.

d. Scalp.
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e. Forge by any standard working procedure with
as little an extension ratio (forging length/
billet length) as 2.8.

12. Isostatic cold compacting gives extrusions with

properties comparable to extrusions from uniaxial cold compacts.

RECOMMENDATIONS FOR PHASE III

I. Phase III Tooling

:1, The Phase III tools (scale up to 170 lb. compacts) have

been designed to prepare compacts by the optimum process technique

determined in .Phase I shown as (10) in the summary above. These

tools have the following capabilities:

a. Cold isostatic compacting cylinder - 30 ksi
compacting pressure, to produce a 170 lb.
compact, 8.1" diameter x 44" long, >74% of
theoretical density based on Figure 5.

b. Hot compacting cylinder - 90 ksi compacting

pressure,to yield a 170 lb. compact, 8.4 to
9.2" diameter (tapered) x 28" long.

II. Process Variables for Phase III

The following process variations are to be studied in

Phase III to determine: (1) how scaling up in compact size

affects process variations and properties of products; (2) if

less than 90 ksi hot compacting pressure will yield acceptable

forging quality and properties; and (3) if fracture toughness

"! can be improved by variations in powder size, preheat conditions

or forging Variations.

A. Powder Size

A A
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B. Preheat Conditions

i~. Atmosphere

a. Controlled Purity

b. Inert Gas

(1) Argon

(2) Nitrogen

2. Heating Rate

3. Temperature

C. Hot Compacting Pressure

D. Scalping

E. Forging Method (increased amounts of hot work)



-35-

-- "REFERENCES

1. J. P. Lyle, Jr., "Development of Aluminum Base Alloys -

Section I Final Report,"Contract No. OA-36-034-ORD-3559 R D,

September 7, 1966.

" I2. A. P. Haarr, "Development of Alilminum Base Alloys - Section II

Final Report," Contract No. DA-36-03'4-ORD-3559 R D, December 20,

1965.

3. A. P. Haarr, "Development of Aluminum Base Alloys - Section III

Final Report," Contract No. DA-36-034-ORD-3559 R D, May 31, 1966.

4. J. T. Staley, "Investigation to Develop a High Strength Stress-

Corrosion Resistant Aluminum Aircraft Alloy," Final Report,

Contract No. 00!9-69-C-0292, January 20, 1970.

5. B. W. Lifka and D. 0. Sprowls, "An Improved Exfoliation Test

vi for Aluminum Alloys" Corrosion, Vol. 22 (1), 1966, pg. 7-15.

6. D. 0. Sprowls and R. H. Brown, "What Every Engineer Should

Know About Stress Corrosion of Aluminum," Metals Progress

Vol. 81 (4), April, 1962, pg. 79-85 and (5) May, 1962,

pg. 77-83.

7. Unpublished Data - Research Notebook 13230-].4.

11 i



-36-

r D

o I
U' o

H •iO0

00

P4 S1 0 0
H

r-4 :1 0 0
0

p

'~ 0

HH

14

ro

r74 0 0 41(d

m

OD m

0 0
t r- c

al m )

-en



I o co co cO

Ln

+ . 0 0
0 0 C14 a0 0)

14

4J

00

0) C1 0 0 %.0 cS
P4 + 0 0

N~~- 0 I'N~

0 00
0 4
r-ii

u0 04

WHHlitn
+) HI0 -

w0-u IL di

d+ 0 0 0 0 HA
%.0 4 8 0

S~P4

%D c' c 0 0

+1 .14

rxi

di0 0 0 0 di 1
di V N N N ,14

-P~ N N '0 '0 w -

I-Z
K. CN N N

4' 4 -



-38-

U) 't
-4H LA

0
ON

to

m' U) 0: 0

LA Hn r ro -P

0 0)
(D O-4

0

w * >1 0
$4 >1 4-) =

U) 0fU .d A ) En

E1m 1) r. (D r

U$4 0 c) Cd 0

o~~~r rz ioc ~

'-4 ct-4

o~~~U -U (P r ~
rw , -- H- OCH .4 4

H -C0 0 -r4
rYl 0 r-4 4 4

49 0v IL) <
FCCW4 

144 0) U n 4r

,4 0 to $4
CO) 4) a i)

E --4 U- d ( ) h'

H 04 0
0 4-) (a'

m U

U r- r4

H 0 Hd4
E-4 0 r (* U

X 4-)fi 4

E-1..- 0 4 0 rz

~ U)

cl H



-39-

0 V

4J 1 r i:J

UW V-O -i)

4.0) 0*- r.4 0)

-4-

E0 0 0C4iQC
It 0 OMN NMWO N j. m f

0 )U 0 0 0 0 0 00 ; C J4 W Z) t)) r) r

I~~( 040 a4 M (0 -~444 C(
I. -L~cQ04 5E~ 00 0 4C V ~

EN 0 -Il-C Ui *.4Ja)(
0 C) 04-~- 0c)c)4~ m N

'.4 -1 E 04Q)

04 1 14 01 4 44t 44 4-4 44 u (o4 z

5 -4 or40r40L 0)0 0 0 0 ra 4 U)
01f. 1Aj 0 N 1N .4~ -O I '-II 144ro C

P~ N NL P-Nm flmk W-4NcV N

WI0 0wc

$4 < KOn

0 0) - - - -11

E-1 u U) w NNNNo O'sNNC-4NN 0
(0E zm Do N 1 - D1 NC -14 4 r4

H c;'4oo- 4 ;C)o o )c' * (

00

0 -I4~ r- 4

444

$4 .>' *r- (Ci(

E- 4-) 4. ) N :: NJ: ii: :: 4.) kDW M0 W ttM t MMM t

0 ( 4- V 00 N 0t
0 Zc r.i P *

E- -1 4J 0 4.

>1 -4 >- 4

%



-7 77 7i

-40-

$4

0l m co a, )

0E 0 0

o -4

(n~~"- -- 10 CN

E-1 0 0 H- 0 0 $4 4)

0~t 00 )

E-f (N H '. 0

I0 0 0 0O r 4

Q) 4J. u

V 4 43 4

H J 0. H 'J5 44

0 0 Lr r-4 4J )

~I4. -4

E- I . (L) Ho *) 41 rd
i~ H I (4 r- O H- p (D p

E-4 X ' .- W 41>
H (- N (N r- H U V0 W U

0 r. 4r

0 0~U

rJ4 4-) rO

41 r-4 LA W
E- W 0 4(N V

(L 4 tO 0

Hb 43 H1 Clg

HN -r4 .4JQ to-U 1:

V) U) 0 rO -C
ai) 0 0 0 H(rILU *0.d,

$i$4(J 4.
S 4.) $4 4 0 r-4 0 ) P CO
U) ' 0 0 0(d 4 0

U) 0 *a V wO
to v) $44 E C)c
t) $4 $4 $4 4)

4 4 43 4. 4-) o-I N L

--4 LA 44 4-4 (u ~ ' -

x * u r

g:.-



C -41-

000 000
m~ r-4 H- r-I U)I

co $4

0)i '-IC N N

<U)U

P4) NCJ' ~~~
00 ~ 0000

00 0

'-I

NU 
H' )c ' c

CD CC.)P

EA4 U) P

r~l o
0

'P) M)r 000 000 .)(D
Z_.$4- 0 Un0 0 U-)0 (1 E

Qrz W ) ON 00100o
r-4 H4 H -1 r

P4 E >

WI J 4-)

E-4I '4 pr

rH -

en ) (n )C 3m I



-42-

W) CNHrI rI .4J
CN C1 m m
00 00

0))

U) W

$4

0 .,1 N N m CN
"-4 U) C'Jc'N m , m

4J 00 00- -

W P4 H- -
0 4-)

HP., ~ - H HHU

H4 H-
0 * H

a4 j
00 Q)

00

E44 Q) L
44fl 00 0 raI

) 0-

a HC) ii
a

E~~ -4 4J4q

.r4 41
4H II 0

mr~ mc4



Ilk -43-

I

FORGING TEMPERATURE

V- FORGING CODE NUMBERS

- ~Forging Temperatur e
Alloy 550 600 650 700 750

MA58 A4 A3 A6 A2 Al

MA39 A12, A7 A9 A8

NOTE:, All uniaxial compacts, cold pressed to
If 706% gree'n density, preheated 5 hours

at 950-F, hot pressed at 90 ksi.
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Ii

TABLE 29

EFFECT OF PREHEAT TIME ON-QUALITY 0F FORGINGS

% Metal ReCovery(4) No. ofDiscohtinuities
Green Preheat Preheat Time Preheat Time 2
Density Temp. 1 --5 20 1 5 20

Alloy (% (F) (Hr.) (Hr.) (Hn.) (Hr.) (Hr.) (Hr.)

MA58 70 900 90 78 91 5 2 3
MA58 70 950 91 92 90 2 3 0MA58 70 1000 93 94 94 4 3 0
MA58 80 900 87 86 90 1 -1 1
MA58 80 1000 85 95 91 1 3 1

MA39 80, 900 54, 66 87 1 0 0
MA39 ;80 i000 89" 79 92 0 1 0

AVERAGE 84 84 91 2 '1,.9 0.7 jjl

NOTES: (1) Uniaxial Cold Compact
(2) Draw, -Forged to 2" x '2"
(3) Hot Compact Pressure of 90 ksi

(4), Preheat Avg. Z.dev.2

5 hours 7 84 689
'20 hours 7 91 25

students 1.5

Prob. of signif. of difference <0.95

:ii

rI
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TABLE 33

-' EFFECT OF HOT COMPACT PRESSURE ON QUALITY OF FORGINGS_

Number of
(1) % Metal Recovery(4) Discontinuities

Green Preheat Hot-Compact Pressure HotCompact Pressure
Density Time Temp. 30 60 90 30 60 90 ° ;

Alloy (%) (Hr.) (0F) (ksi) (ksi) (ksi) (ksi) (ksi) (ksi)

-MA58 70 5 950 88 87 92 2 4 3
MAE8 80 5 900 82 87 86 2 6 1
MA58 80 5 950 65 91 100 2 0 1
MA58 80 5 1000 88 90 95 0 6 3
MA58 70(2) 5 950 28 92 93 5 0 0

MA39 70 5 950 25 70 93. 0 1 0
MA39 80 5 950 3.0 78 71 0 2 0
MA39 80 5 1000 38 68 79 0 0 1
MA39 70(2) 5 950 76 89 91 1 1 0

AVERAGE 56 84 89, 1.2 2.2 1

NOTES: (1) Uniaxial Cold Compact Except as Noted.
(2) 'Isostatic Cold Compact.
(3) Dra Forged to 2" x 2"

(4) Hot Compact Press * 30 ksi 60 ksi 90 ksi
9 9 9

Avr. 56 84 89
E dev.2  3291 675 634

T = 2.21(5) T 1.22(5)
p > 0.975 p < 0.90 -

(5) Student's -r --p probability that difference
in averages is significant. -

[
[-

& i[
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TABLE 37 L_

EFFECT OF FORGING TEMPERATURE

ON LONGITUDINAL PROPERTIES,

TENSILE STRENGTH

FORGING TEMPERA'UOFE
ALLOY 550 600 -650 700 750

ALCOA MA58 74050. 70500. 71850,. 72300. 70500.
ALCOA MA39 75150. 73650. 72800.

YIELD STRENGTH

FORGING, TEMPERATURE
ALLOY 550 600 650' 700 750

ALCOA MA58 65950. 62350. 62950. 64300. 62900.
ALCOAMA39 -65300. 63800. -63000i

ELONGATION V
FORGING TEMPERATURE

ALLOY 550 600 650: 700 75

ALCOA-MA58 18.0 16.0 12.0 16.0 -18 .0
ALCOA MA39, 13.0 14.0 15.0

NOTCH TENSILE STRENGTH!YIELO STRENGTH RATIO u
FORGING TEMPERATURE7

ALLOY '550 600 650 700 750

ALCOA-AA58 1.37 1.48 1.45' 1.46 1.41
ALCOA MA39 1.25^ 1.26 1.26

U'
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TABLE 38

EFFECT OF FORGING TEMPERATURE
ON TRANSVERSE PROPERTIES

.iTENSILE STRENGTH
FORGING TEMPERATURE

ALLOY 550 600 650 700 750

ALCOA MAS8 71950. 67200. 73500. 67500. 66500.
>ALCOA MA39 70600, 70800. 71750.

YIELD STRENGTH:

,FORGING TEMPERATURE
ALLOY 550 600 650 700 750

jALCOA MA58 63900. 595001 65550. 57450, 58200,
ALCOA MA39 61800. 61600, 61650.

ELONGATION

LI FORGING TEMPERATURE
ALLOY 550 600 650 700 750

ALCOA MA58 6,0 8.0 1390 8.0 6,0
ALCOA MA39 6.0 7.0 6.0

NOTCH TENSILE STRENGTH-YIELD STRENGTH RATIO

FORGING TEMPERATURE
ALLOY 550 600 650 700 750

ALCOA MA58 1.09 1.06 .90 1.09 o68
ALCOA MA39 .65 .78 .62

ii
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A TABLE LjLj

INTERACTIONS OF GREEN DENSITY, PREHEAT TIME,
PREHEAT TEMPERATURE, ALLOY ON

LONGITUDINAL PROPERTIES

TENSILE STRENGTH

GREEN DENSITY = 70% GREEN DENSITY z 80%

PREHEAT PREHEAT TIMEALLOY TEMP. 1 HR. 20 HR. I HR. 20 HR.
ALCOA MA58 900 75700. 76600. 75250. 73300o
ALCOA MA58 1000 72900. 76600. 77350. 73850.
ALCOA MA39 900 75300. 73050. 73600. 748500ALCOA MA39 1000 73050. 75600. 74450o 75450.

YIELD STRENGTH-

GREEN DENSITY = 70% GREEN DENSITY m 80%
PREHEAT PREHEAT TIME

ALLOY TEMP, 1 HR. 20 HR. 1 HR. 20 HR.

ALCOA MA58 900 67450. 68200. 67600. 65250.ALCOA MA58 1000 65450. 69400. 69500. 66350.

ALCOA MA39 900 65500. 62550. 64050. 65000.ALCOA MA39 1000 63150. 65750. 65750. 66550.

Li ELONGATION

GREEN DENSITY x 70% GREEN DENSITY a 80%PREHEAT PREHEAT TIMEALLOY TEMP. 1 HR. 20 HR. 1 HR. 20 HR.

ALCOA MA58 900 14.0 16.0 15.0 15.0
ALCOA MAS8 1000 16.0 16.0 16.0 17.0
ALCOA MA39 900 16.0 15.0 13.0 15.0
ALCOA MA39 1000 16.0 14.5 16.0 14.0
NOTCH TENSILE STRENGTH YIELD STRENGTH RATIO

GREEN DENSITY a 70% GREEN DENSITY = 80%PREHEAT PREHEAT TIMEALLOY TEMP. 1 HR. 20 HR. I HR. 20 HR.

ALCOA MA58 900 1.43 1.23 1.42 1.35ALCOA MAS8 1000 1.45 1.33 1.35 1.35
I ALCOA MA39 900 1.25 1.23 1.32 1.16

ALCOA MA39 1000 1.25 1.11 1.29 1.16
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TABLE 115

INTERACTIONS OF GREEN DENSITY# PREHEAT TIME*
PREHEAT TEMPERATURE, ALLOY ON

TRANSVERSE PROPERTIES U

TENSILE STRENGTH

GREEN DENSITY = 70% GREEN DENSITY a 80%
PREHEAT PREHEAT TIME

ALLOY TEMP, 1 HR. 20 HR, I HR. 20- HR,

ALCOA MA58 900 72750. 71450. 74300. 69250.
ALCOA MA58 1000 70450. 74500. 72750. 68800. L

ALCOA MA39 900 73650. 72000. 70850. 71200.
ALCOA MA39 1000 72100. 73400. 73450. 72350.

YIELD STRENGT.

GREEN DENSITY = 70% GREEN DENSITY a 80%
PREHEAT PREHEAT TIME

.ALLOY TEMP. I HR. 20 HR. 1 HR. 20 HR.

,ALCOA MA58 -900 64000. 63550. 65150. 600.

,A:LCOA MAS8 1000 61050." 66400. 63500. 60300.

,ALCOA MA39 900 63600. 61600. 59250. :61650i
'AL OA MA39 1600 -61300 63750. 62500. 6!15.

ELONGATION

GREEN-.DENSITY , 7,0% GREEN- DENSITY 3 80%
PREHEAT PREHEAT TIME

,ALLOY TEMP. 1 HR. 20 HR. 1 HR. 20 HR.

ALCOA MA58 900 11.0 7.0 12.0 6.0
,ALCOA MA58 1000 12.0 8.0 8.0 16.0

ALCOA MA39 900 8.0 12.0 11.0 6.0
ALCOA MA39 1000 10.0 8.0 800 900

NOTCH TENSILE STRENGTH - YIELD STRENGTH RATIO

GREEN-DENSITY a 70% GREEN DENSITY •80% [
PREHEAT PREHEAT TIME

ALLOY TEMP. 1 HR. 20 HR. 1 HR. 20 HR.

ALCOA MA58 900 1.09 .60 .75 .81 V
ALCOA MA58 1000 .86 .86 .85 .79

.ALCOA MA39 900 .85 .47 1.00 .67 V
ALCOA MA39 1000 .73 .65 .85 ,83

I:
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TABLE 47

INTERACTION OF GREEN DENSITY* HOT COIN
PRESSURE AND ALLOY

ON LONGITUDINAL PROPERTIES

TENSILE STRENGTH

GREEN HOT COIN PRESSURE

ALLOY DENSITY 30 KSI 60 KSI 90 KSI

ALCOA MA58 70 74050. 75550. 74300.

ALCOA MA58 80 74050. 75300. 72800.

ALCOA MA39 70 74150, 74050. 73250.

ALCOA MA39 80 71600. 73550. 73100.9

YIELD STRENGTH

GREEN HOT COIN PRESSURE

ALLOY DENSITY 30 KSI 60 KS! 90 KSI

ALCOA MA58 70 66900. 68300. 67650.

ALCOA MA58 80 66750, 67200. 65250o

ALCOA MA39 70 63800, 64500o 62300.

ALCOA MA39 80 61750. 64300o 64300.

ELONGATION

GREEN HOT COIN PRESSURE

ALLOY DENSITY 30 KSI 60 KS! 90 KSI

ALCOA MA58 70 18.0 18.0 16.0

ALCOA MA58 80 16.0 16.0 19.0

ALCOA MA39 70 16.0 16.0 i5.0

ALCOA MA39 80 14.0 16.0 16.0

NOTCH TENSILE STRENGTH - YIELD STRENGTH RATIO

GREEN HOT COIN PRESSURE

ALLOY DENSITY 30 KSI 60 KSI 90 KSI

ALCOA MA58 70 1.37 1.32 1.31

ALCOA MA58 80 1.36 1.28 1,41

ALCOA MA39 70 1.26 1.25 1.29

ALCOA MA39 80 1.34 1.30 1.29



1! TABLE f48

INTERACTION OF GREEN DENSITY, HOT COIN
PRESSURE AND ALLOY

ON TRANSVERSE PROPERTIES

STENSILE STRENGTH
GREEN HOT COIN PRESSURE

ALLOY DENSITY 30 KSI 60 KSI 90 KSI

ALCOA MA58 70 73200. 73450. 72150.
ALCOA MA58 80 69600. 70050, 68550.

ALCOA MA39 70 69200. 71150, 69700.
ALCOA MA39 80 67200. 71300. 70700.

YIELD STRENGTH

GREEN HOT COIN PRESSURE

ALLOY DENSITY 30 KSI 60 KSI 90 KSI

ALCOA MA58 70 65300. 64400, 64700.
ALCOA MASS 80 600.* 62450.o 59350.

ALCOA MA39 70 60630 61700, 59350.jiALCOA M4A39 80 59850o 60950, 61750.

ELONGATION

GREEN HOT COIN PRESSURE

ALLOY DENSITY 30 KSI 60 KSI 90 KSI

fl ALCOA MASS 70 11.0 12.0 900

- ALCOA MASS 80 70 6.0 11.0

ALCOA MA39 70 4.0 4.0 7.0'1ALCOA MA39 80 5.0 10.0 5.0

NOTCH TENSILE STRENGTH - YIELD STRENGTH RATIO

GREEN HOT COIN PRESSURE
ALLOY DENSITY 30 KSI 60 KS! 90 KS!

ALCOA MA58 70 .72 .73 .86
ALCOA MASS 8o o83 o83 *84

4 iALCOA MA39 70 .75 .79 .81
-- ALCOA MA39 s0 .75 .71 .75

3 i

1.*
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II TABLE 50

EFFECT OF ISOSTATIC AND UNIAXIAL COLD COMPACTING

ON LONGITUDINAL PROPERTIES

[TENSILE STRENGTH
ALCOA MA58 ALCOA MA39

HOT COMPACTING PRESSURE
30 KSI 60 KSI 90 KSI 30 KSI 60 KSI 90 KSI

UNIAXIAL 74050. 75550, 74300. 74150. 74050. 73250.
ISOSTATIC 73300. 74400. 73900. 75800. 75300. 74900.

YIELD STRENGTH

11ALCOA M4A58 ALCOA MA39
HOT COMPACTING PRESSURE

30 KS'l 60 KS! 90 KS! 30 KSI .50 KS! 90 KS!

UNIAXIAL 66900. 68300. 67650. 63800. 64500. 62300.
ISOSTATIC 66850. 68150. 67200. 65450. 64400. 64500.

ii ELONGATION

ALCOA MA58 ALCOA MA39
; iHOT COMPACTING PRESSURE

30 KSI 60 KSI 90 KSI 30 KSI 60 KSI 90 KSI

UNIAXIAL 18.0 18.0 16.0 16.0 16.0 15.0
ISOSTATIC 16.0 16.0 18.0 15.0 16.0 14.0

NOTCH TENSILE STRENGTH - YIELD STRENGTH RATIO

ALCOA MA58 ALCOA MA39
HOT COMPACTING PRESSURE

30 KS! 60 KS! 90 KSI 30 KSI 60 KSI 90 KSII30
UNIAXIAL 1.37 1.32 1.31 1.26 1.25 1.29
ISOSTATIC 1.40 1.31 1.42 1.07 1.14 1.21

I
I

4
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TABLE 51

EFFECT OF ISOSTATIC AND UNIAXIAL COLD COMPACTING F'
ON TRANSVERSE PROPERTIES

TENSILE STRENGTH

ALCOA MAS8 ALCOA MA39
HOT COMPACTING PRESSURE

30 KSI 60 KSI 90 KSI 30 KSI 60 KSI 90 KSI

UNIAXIAL 73200, 73450, 72150. 69200. 71150. 69700o i
ISOSTATIC 70850. 75000. 72450. 71300. 72700. 69700.

YIELD STRENGTH

ALCOA MA58 ALCOA MA39
HOT COMPACTING PRESSURE

30 KSt 60 KSI 90 KSI 30 KSI 60 KSI 90 KSI

UNIAXIAL 65300o 64400o 64700. 60650. 61700. 59350,
ISOSTATIC 64000o 67850. 64800. 61550. 604509 59400o

ELONGATION

ALCOA MA58 ALCOA MA39
HOT COMPACTING PRESSURE

30 KSI 60 KSI 90 KSI 30 KSI 60 KSI 90 KSI

UNIAXIAL 11.0 12.0 9.0 4.0 4.0 7.0
ISOSTATIC 8.0 7,0 800 6.0 6.0 4.0

NOTCH TENSILE STRENGTH -YIELD STRENGTH RATIO I
ALCOA MASS ALCOA MA39

HOT COMPACTING PRESSURE

ISOSTATIC 1,00 .89 1.20 .81 .79 .90
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TABLE 52

INTERACTIONS OF PREHEAT TIME AND TEMPERATURE
ON QUALITY OF MA58 ALLOY 2" SQUARE HAND FORGINGS

(PROJECT C)

Preheat Preheat Hours
Temp.(°F) 1 5 20 Average

Percent Metal Recovery
900 90 78 91 86

ii950 91 92 90 91
1000 93 94 94 94

Average 91 88 91 90

Number of Isolated Discontinuities

900 5 2 3
950 2 3 0
1000 4 3 0

S..

NOTES: (1) Cold Pressed to 70% density.4i (2) Not compacted at 90 ksi.

Il

-a
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TABLE 53 1

INTERACTIONS OF PREHEAT TIME,
PREHEAT TEMPERATURE Ii

ON LONGITUDINAL PROPERTIES
OF ALCOA MA58

TENSILE STRENGTH I
TEMP. TIME (HR)
(F) 1 5 20

900 75700. 76650. 76100.
950 76600. 74300. 77200.
1000 72900. 76400. 76600.

YIELD STRENGTH F
TEMP* TIME (HR)
(F) 1 5 20 I

900 67450. 68300. 68200.
950 69350. 67650. 69150.
1000 65450. 69200. 69400,

ELONGATION

TEMP. TIME (HR) V
(F) 1 5 20

900 14.0 14.0 16.0
950 15.0 16.0 14.0
1000 16.0 16.0 16.0

NOTCH TENSILE STRENGTH - YIELD
STRENGTH RATIO

TEMP. TIME (HR)
(F) 1 5 20

900 1.43 1.34 1.23

950 1.35 1.31 1.241000 1.45 1.34 1.33
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1 TABLE 5L

INTERACTIONS OF PREHEAT TIMErTPREHEAT TEMPERAIURE

ON TRANSVERSE PROPERTIES
OF ALCOA MA58

TENSILE STRENGTH

TEMP. TIME (HR)

(F) 1 5 20

900 72750. 70000. 71450.

950 75250. 72150. 70200.,

1000 70450. 73400. 74500.

YIELD STRENGTH

TEMP. TIME (HR)

(F) 1 5 20

900 64000o 62300. 63550.

950 65300. 64700. 63250.

1000 61050% 64450. 66400.

ELONGATION

TEMP. TIME (MR)

(F) 1 5 20

900 110 6.0 7.0

950 11.0 9.0 6.0

1000 12.0 12.0 8.0

ii NOTCH TENSILE STRENGTH - YIELD
STRENGTH RATIO

TEMP, TIME (HR)
(F) 1 5 20

900 1.09 .65 .60

950 .93 .86 .58

1000 .86 .84 o86
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TABLE 55

INTERACTIONS OF PREHEAT TEMPERATURE, HOT COMPACTING
PRESSURE AND ALLOY ON QUALITY OF 2" SQ. P/M HAND FORGINGS V~(PROJECT E)

Preheat [
Temp. Hot Compacting Pressure

Alloy (OF) 30 ksi 60 ksi 90 ksi Avg.

Percent Metal Recovery 1
MA58 900 82 87 86 85

A"950 66 91 100 86
1000 88 90 95 91

AVERAGE 78 90 94

MA39 900 26 84 66 59
950 10 78 71 53 Li

1000 38 68 79 62
AVERAGE 25 77 72

OVERALL AVERAGE 52 83 83 L
Number of Isolated Discontinuities

MA58 900 1 6 1
950 2 0 1

1000 2 6 3

MA39 900 0 0 0
950 0 2 0I

1000 0 0 1

NOTES: (1) Cold pressed to 80% density. L
(2) Preheat for 5 hours.

.4a I
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TABLE 56

INTERACTION OF PREHEAT TEMP.9 HOT COIN
d PRESSURE AND ALLOY

ON LONGITUDINAL PROPERTIES

'SH TENSILE STRENGTH

PREHEAT HOT COIN PRESSURE
ALLOY TEMP. 30 KSI 60 KS! 90 KS!

ALCOA MA58 900 73650o. 75900 73950.
SALCOA MA58 950 74050. 75300. 72800.

ALCOA MA58 1000 73300. 74950. 73250.

ALCOA MA39 900 74850. 73150.
ALCOA MA39 950 71600. 73550. 73100.
ALCOA MA39 1000 74550. 76000. 74900.

YIELD STRENGTH

PREHEAT HOT COIN PRESSURE
ALLOY TEMP, 30 KS! 60 KS! 90 KS!

ALCOA MA58 900 66100. 67800. 66550.

- ALCOA MAS8 950 66750. 67200. 65250.
11 ALCOA MAS8 1000 66100. 68000. 65900.

ALCOA MA39 900 65450. 61350.
iiALCOA MA39 950 61750. 64300. 64300.

ALCOA MA39 1000 64950. 67250. 65800.

ELONGATION

PREHEAT HOT COIN PRESSURE
ALLOY TEMP. 30 KSI 60 KSI 90 KSI
ALCOA MA58 900 190 13.0 1690

ALCOA MA58 950 16.0 16.0 19.0
ALCOA MA58 1000 16.0 18.0 16.0

ALCOA MA39 900 15.0 16.0
ALCOA MA39 950 14.0 16.0 16.0

II ALCOA MA39 1000 16.0 16.0 16.0

NOTCH TENSILE STRENGTH -YIELD STRENGTH RATIO

% PREHEAT 4OT COIN PRESSURE
ALLOY TEMP. 30 KSI 60 KSI 90 KSI

AALCOA MASS 900 1.31 1.28 1.33
ALCOA MASS 950 1.36 1,28 1.41

.~ALCOA MA58 1000 1.34 1.38 1.41

ALCOA MA39 900 1.21 1.25
ALCOA MA39 950 1.34 1.30 1.29
ALCOA MA39 1000 1.19 1.25 1.20
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TABLE 57

INTERACTION OF PREHEAT TEMP., HOT COIN
PRESSURE AND -ALLOY

ON TRANSVERSE PROPERTIES

TENSILE STRENGTH

PREHEAT HOT COIN PRESSURE

ALLOY TEMP. 30 KSI 60 KSI 90 KSI

ALCOA MA58 900 73300. 72800, 71100.
ALCOA MASS 950 69600. 70050. 68550.
ALCOA MA58 1000 68900. 72150. 71200. I

ALCOA MA39 900 73500. 70200.
ALCOA MA39 950 67200. 71300. 70700. ["

ALCOA MA39 1000 73450. 73150, 71200. L

YIELD STRENGTH

PREHEAT HOT COIN PRESSURE
ALLOY TEMP. 30 KSI 60 KS! 90 KSI

ALCOA MA58 900 65300. 66050. 63000. -
ALCOA MA58 950 60500. 62450. 59350,

ALCOA MA58 1000 60000. 64300. 62750.

ALCOA MA39 900 62950. 59850.
ALCOA MA39 950 59850. 60950. 61750.
ALCOA MA39 1000 63300. 63550. 60950.

ELONGATION

PREHEAT HOT COIN PRESSURE .i

ALLOY TEMP. 30 KSI 60 KSI 90 KSI

ALCOA MA58 900 6.0 5.0 80

ALCOA MA58 950 7.0 6.0 11.0

ALCOA MA58 1000 7.0 1100 13.0

ALCOA MA39 900 80 75 .5 I
ALCOA MA39 950 5.0 10.0 .0
ALCOA MA39 1000 12.0 8.0 12.0

NOTCH TENSILE STRENGTH -YIELD STRENGTH RATIO (~1

PREHEAT HOT COIN PRESSURE
ALLOY TEMP. 30 KSI 60 KS! 90 KSI

ALCOA MA58 900 .72 .81 .64
ALCOA MASS 950 .83 .83 .84 I
ALCOA MA58 1000 994 .93 o77

ALCOA MA39 900 .76 .91
ALCOA MA39 950 .75 .71 .75
ALCOA MA39 1000 .75 .81 .86
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MA39 Forging, Preheated 1 hr at 1000 F I
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APPENDIX I - DEVELOPMENT OF METHOD FOR DETERMINATION OF MELTING
TEMPERATURE IN P/M WROUGHT MATERIALS

Sheet and extrusion material in two alloys shown in

Table 1, Appendix I used for identifying P/M melting in solution

I treatment was prepared by cold pressing powder to 85% density,

Ij preheating in flowing argon at 900 F for 4 hours, hot pressing

at approximately 90 ksi and extruding or hot pressing. The

1sheet material was rolled from a 2" X 2" X 8" section of a hand
I fforging made from a hot pressed compact (forging prepared by

hammer forging). The sheet was prepared by hot rolling from 2"

thick to 0.18" and cold rolling to 0.09" thick without inter-

mediate anneals.

Both sheet And extrusion samples were solution treated

-at 900 to 1000 F for 2 hours, cold water quenched, naturally

I <aged 6-7 days and artificially aged 24 hours at 248 F. Trans-

verse tensile properties and metallographic examinations were

accomplished on these materials to find evidence of the onset

] of melting.

RESULTS AND DISCUSSION

The results of metallographic examination and tensile

Kproperty tests of P/M sheet and extrusions are shown in Table 1,

'Appendix I, for the actual solution heat treat temperatures used.

'I
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The 8.8% Zn, 3.4% Mg, 0o5% Cu, 0.76% Fe+Ni alloy (analog to

MA39) reached a strength plateau at 924 F solution temperature

while ductility was improved up to 942 F solution, temperature. i
X-ray examination for soluble phases showned 921 F sufficient

to dissolve all the Zn, Mg, and Cu in MA39 (Table 53, Footnote 4).

Since a companion ingot material in the same alloy showed melting

at 942 F metallographically, this temperature might be excessive

for routine use. Examination of microstructures at 962 F shows

no significant evidence of melting in the P/M extrusion sample LI

(shown in Figure 1). Above 962 F, this alloy begins to show

evidence internal porosity similar in appearance to high

.temperature oxidation, as shown in Figure 2, for 981 F. This

process continues at higher temperatures,. generating an un-
_j

testable material .with a micrbstructure as 'shown in Figure 3

at, 1008 F.

The 7o9o% Zn, 2.4%'Mg, l.0%-Cu, 1.5% Fe+Ni alloy L
gives slightly different behavior than the above alloy° At

942 F, the alloy is on a yield strength plateau and at peak

ductility. This-alloy shows microstructural development at Y

temperatures frOm. 962 to 1008F somewhat- imilar to that shown

in figures 1 to 3.o

since both alloYs show wonly modest improvement "in- ,

strength above, 942 F with an accompanying loss in ductility,
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7-777777 MM" FM-

a solution temperature indicated by either a strength plateauI or optimum ductility would probably be below the solidus of

:1 1the alloy.

It appears that caution in examining microstructures

is necessary. The porosity and blistering shown in these

materials could be generated by adherent moisture or hydrogen

on AI2 06 from the powder surface, which was not removed in the

preheat operation (at 900 F for the materials tested). The

alloy would not have to be molten for this moisture to be

effective in generating internal porosity, since gas evolution

. from the entrapped oxide would take place for a solution

temperature above the preheat temperature. If the preheat

temperature were above the solution treatment temperature,

subsequent solution treatment could be detrimental to

properties by merlting without generating internal porosity.

Property tests then have to hold first significance in

determining solution temperature limits. On this basis,

.924 F appears to be a reasonable solution temperature for the

8.8%-Zn, 3.4%'Mg, 0.5% Cu, 0.76% Fe+Ni alloy, while 942 F could

be used for the 7.9% Zn, 2.4% Mg, 1.0% Cu, 1.5% Fe+Ni alloy.

V~
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APPENDIX II - FABRICATION OF P/MM16 RECEIVER FORGINGS MATERIAL A
PREPARATION AND TESTING .

Extruded 1-7/8" diameter rod was prepared from two H
powder alloys (MA58 and MA39) listed in Table 1 (text) by cold [1
pressing the powder isostatically to yield a compact of approx-

imately 80% density. The cold-compacts were approximately 7"

diameter X 12" long. These compacts were preheated in flowing

dry argon for 5 hours at 950 F, immediately hot pressed against

a blind die and extruded from a 7-1/2"' diameter cylinder-to V
i-7/8" diameter rod at less than 3 feet per minute extrusion

speed.

Sections of rod of each alloy were cut to 6the requiredI

lengthas the starting material for the die forging of the M16

rifle lower receiver.

A set of lower receiver forgings of each alloy was LI
produced by reheating the P/M extruded rod to 820 F, and. forging

on a mechanical press by a three-strike rod-to-finished-forging

continuous sequence. L
The resultant forgings were solution heat treated

(890 F for MA58, 920 F for MA39) for 2 hours, cold Water quenched,

naturally aged 6 days, and artificially aged 24 hours at 250 F.

The forgings were etched after aging for observing

microstructure and crack detection. The forgings -were initially

L
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'immersedd, in a 50/0 NaOH solution at 140 F, water rinsed, immersed

F in a 50/% nitric acid solution, water rinsed and air blast dried.

Sections of aged extrusions were exposed to the

fMASTMAASIS accelerated exfoliation test. The "as forged"

surface and a surface 0.090" below the "as forged" surface

were exposed for one week.

RESULTS AND DISCUSSION

1 Examination of the M16 lower receiver forgings showed

considerable evidence of surface recrystallization in the pieces

of MA58 alloy, and some evidence of surface recrystallization

I. in selected portions of the MA39 forgings, as seen in Figures 1

and 2, Appendix II. Sections shown in Figures 3 and 4 show the

extent of recrystallization below the surface in the receiver

ring section (upper) and trigger guard strut section (lower)

for MA58 (Figure 3 Appendix II) and MA39 (Figure 4 Appendix II).

The sample locations can be seen as a faint dashed line in

Figure 2 Appendix II on the P/M MA58 alloy forging.

The MA58 alloy forging (Figure 3 Appendix II) shows

a considerably deeper recrystallized skin at both sample locations

than does the MA39 alloy forging (Figure 4 Appendix II). The

0.8 Co in MA39 appears to hinder recrystallization, probably

by nucleation control, judging from the large recrystallized

grain sizes evident in the MA39 forgings.

I%



-142-

The results of MASTMAASIS exfoliation tests are _

shown in Figure 5 Appendix II showing the sections of Ml6 7

Receivers exposed for one week. The surface recrystallied

skin was apparently prone to exfoliate in both- alloys, while 7

only the MA58 forging in this temper showed exfoliation of i

the underlying unrecrystallized metal. The MA39 alloy

forging, when unrecrystallized, appears resistant to

exfoliation in. this temper (80+ ksi longitudinal yield j
strength - Table 57 text).. LI

LI
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[1 Cross Section of MA58 Alloy1416 Lower Receiver Through thert

Trigger Guard Strut. (2X, Keller's Etch)

Figure 3 -Appendix 11
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Cross Section of 14A39,Alloy M416 Lower IReceiver 'Through ,the, Front
Receiver Ring.- (2'X Kell er ' tch)

NlNi

Cross Section of M4A39 Alloy 3416 Lower Receiver Through 'the,
Trigger Guard igure (2X, Keller's Etch)U
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TABLE 1, APPENDIX III

MA58-EFFECT OF GREEN DENSITY ON LONGITUDINAL TENSILE PROPERTIES

Preheat Hiot Coin Forging CodeNo. T .(ks,i) _Y._!_,ks

Temp. Time Press. Green Density Green Density. GrdeerD hsity
e F) L Mr) (ksi) 70% 80% 70% 80% 70% 80%

900 1 90 El E4 75.8 75.7 67.7 68.0
900 1 90 El E4 75.6 74.8 67.2 67.2
900 20 90 Hi H4 76.2 73.1 68.0 64.9
900 20 90 Hi H4 76.0 73.5 68.4 65.2

1000 1 90 E3 E5 70.8 77.5 61.3 69.8
1000 1 90 E3 E5 70.1 77.2 60.8 69.2
1000 20 90 H3 H5 76.2 74.3 69.0 66.8
1000 20 90 H3 H5 77.0 73.4 69.8 65.9

950 5 30 C1 C3, 73.8 74.3 66.7 66.8 V
950 5 30 C1 C3 74.3 73.8 67.1 66.7
950 5 60 D1 D3 73.4 75.3 64.9 67.5

950 5 60 DI b3 73.5 75.3 63.9 .66.9
950 5 90 A13 B25 75.6 72.8 68.5 65.4 J
950 5 90 A13 B25 73.0 72.8 66.8 65.1

Ll
n 14 14 14 14

Avg. 74.4 74.6 66.4 66.8
Z dev' 56.30 29.61 98.22 28.78

Std dev 2.1 1.5 2.7 1.5

Student'st = .29 .48
d.i.= 26 26
P(,) 60% 70%

Notes (1) P Probability that difference between averages is significant. t I

LU

4!
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'TABLE '1, APPENDIX III

MA58-EFFECT OF GREEN DENSITY ON LONGITUDINAL TENSILE PROPERTIES

Preheat Hot coin Forging Code No. El (%) NTS(ksi)
Temp. Time Press. Green Density Green Density Green Density

( oF) 1L r) (ksi) 70% 80% 70% 80% 70% 80%

900 1 90 El E4 14.0 14.0 97.5 95.0
900 1 90 El E4 14.0 16.0 95.8 96.4
900 20 90 H1 H4 16.0 16.0 82.4 89.6
900 20 90 Hi H4 16.0 14.0 85.3 86.8

1000 1 90 E3 E5 10.0 16.0 94.4 91.5
1000 1 90 E3 E5 14.0 16.0 95.5 96.7
1000 20 90 H3 H5 16.0 16.0 92.9 90.3
1000 20 90 H3 H5 16.0 18.0 92.4 88.8
950 5 30 Cl C3 16.0 14.0 91.4 9.4
950 5 30 Cl C3 20.0 18.0 91.9 91.0
950 5 60 Dl D3 14.0 16.0 88.4 89.1

Ll 950 5 60 Dl D3 10.0 16.0 91.9 82.7
950 5 90 A13 B25 16.0 18.0 89.8 91.5
950 5 90 A13 B25 16.0 20.0 88.6 92.0

n= 14 14 14 14
Avg 14.8 16.3 91.3 90.8

F, deV2  85.72 38.86 223.60 176.67

Std dev 2.57 1.73 4.15 3.69
Student's t = 1.81A d.f. = 26P(]) = >95%

Notes (1) P = Probability Difference.

lrj
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TABLE 2, APPENDIX III

MA58-EFFECT OF GREEN DENSITY ON TRANSVERSE PROPERTIES

Preheat Hot Coin Forging Code No. T.S.(ksi) Y.S.(ksi)
Temp. Time Press. Green Density Green Density Green Density [
(0F) (Hr) (ksi) 70% 80% 70% 80% 70% 80%

900 1 90 El E4 73.7 74.1 65.0 65.2 1
900 1 90 El E4 71.8 74.5 63.0 65.1
900 20 90 Hi H4 71.2 69.6 63.5 60.6
900 20 90 Hi H4 71.7 68.9 63.6 61.1

1000 1 90 E3 E5 70.8 70.7 61.3 62.0
1000 1 90 t3 ES 70.1 74.8 60.8 65.0
1000 20 90 H3 H5 70.1 69.0 66.8 60.7 i
1000 20 90 H3 H5 74.5 68.6 66.0 59.9
950 5 30 Cl C3 73.3 70.0 -- 2 60.6
950 5 30 Cl C3 73.1 69.2 65.3 60.4
950 5 60 Dl D3 73.4 69.1 64.9 62.8
950 5 60 Dl D3 73.5 71.0 63.9 62.1
950 5 90 A13 B25 72.3 68.4 64.7 59.5
950 5 90 A13 B25 72.0 68.7 64.7 59.2

n= 14 14 13 14

Avg 72.2 70.5 64.1 61.7
Z dev2 24.90 68.54 35.17 56.0

Std dev 1.38 2.30 1.71 2.07 H
Student's t = 2.37 3.26

d.f. = 26 25

p(4) = 98.5% 99.5%

Notes (1) To be retested.
(2) invalid Test Parameter.
(3) To be Determined.
(4) P = Probability that difference between averages is significant.I]
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TABLE 2, APPENDIX III

MA58-EFFECT OF GREEN DENSITY ON TRANSVERSE PROPERTIES

If Preheat Hot Coin Forging Code No. El (%) NTS(ksi)
Temp. Time Press. Green Density Green Density Green Density
(OF) (Hr) (ksi) 70% 80% 70% 80% 70% 80%

1 900 1 90 El E4 8.0 12.0 65.6 41.4
900 1 90 El E4 14.0 12.0 73.7 56.0
900 20 90 Hi H4 6.0 6.0 36.4 55.5
900 20 90 Hi H4 8.0 6.0 40.1 42.5
000 1 90 E3 E5 0.0 8.0 49.8 51.9

1000 1 90 E3 E5 14.0 8.0 55.6 54.2
I0Q0 20 90 H3 H5 -- 16.0 60.2 43.8
1000 20 go 1H3 H5 8.0 16.0 53.4 51.0

i|950 5 30 el C3 14.0 8.0 46.0 48.0

950 5 60 Dl D3 14.0 6.0 44.4 53.4
950 5 60 D1 D3 10.0 6.0 49.3 49.0

I 950 5 90 A13 B25 10.0 8.0 53.9 54.1
950 5 90 A13 B25 8.0 14.0 57.4 46.0

n = 13 14 14 13

Avg 10.2 9.4 52.4 49.8
E deV 2  99.70 187.44 1277.04 305.76

Std dev 2.88 3.80 9.91 5.05
Student' s t=

p(4) Not signif. Not signif.

Notes (1) To be retested.
(2) Invalid Test Parameter.
(3) To be Determined.

U(4) P = Probability that difference between averages is significant.

; L
Uj
LI
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TABLE 3, APPENDIX iII

MA39-EFFECT OF GREEN DENSITY ON LONGITUDINAL TENSILE PROPERTIES

Preheat Hot coin Forging Code No. T.S.(ksi) Y.S.(ksi)--
Temp. Time Press. Green Density Green Density Green Density
(OF) (Hr) (ksi) 70% 80% 70% 80% 70% 80%

900 1 90 E6 E8 75.0 73.6 65.3 63.9 V
900 1 90 E6 E8 75.6 73.6 65.7 64.2
900 20 90 H6 H8 73.2 74.3 62.8 64.7
900 20 90 H6 H8 72.9 75.4 62.3 65.31

1000 1 90 E7 E9 72.7 73.8 63.0 65.4
1000 20 90 E7 E9 73.4 75.1 63.3 66.1 ri
1000 20 90 H7 H9 74.8 75.4 64.8 66.5 H
1000 20 90 H7 H9 76.4 75.5 66.7 66.6
950 5 30 CS C7 74.0 72.1 63.4 62.5
950 5 30 C5 C7 74.3 71.1 64.2 61.0
950 5 60 D5 D7 73.7 73.3 64.0 64.0

950 5 60 D5 D7 74.4 73.8 65.0 64.6
950 5 90 A14 B26 73.6 73.1 63.6 63.6
950 5 90 A14 B26 72.9 -- 1 61.0 65.0

n= 14 13 14 14
Avg 74.06 73.8 63.94 64.5

Z dev2 15.60 20.96 28.84 30.53
Std dev 1.10 1.32 1.49 1.53

Notes (1) Invalid Test Parameter.

[_

F



H -153-

TABLE 3, APPENDIX III

Ki MA39-EFFECT OF GREEN DENSITY ON LONGITUDINAL TENSILE PROPERTIES

Preheat Hot Coin Forging Code No. El (%) NTS(ksi)
Temp. Time Press. Green Density Green Density Green Density
(OF) (Hr) (ksi) 70% 80% 70% 80% 70% 80%

900 1 90 E6 E 16.0 12.0 82.9 83.8

900 1 90 E6 E8 16.0 14.0 80.5 52.8
900 20 90 H6 H8 15.0 15.0 78.2 80.5

II 900 20 90 H6 H8 15.0 15.0 75.4 70.4
1000 1 90 E7 E9 16.0 16.0 78.9 85.6
1000 20 90 E7 E9 16.0 16.0 79.2 84.9r1 1000 20 90 H7 H9 15.0 14.0 74.2 74.1
1000 20 90 H7 H9 14.0 14.0 72.8 74.1
950 5 30 C5 C7 16.0 14.0 78.2 82.1

I 950 5 39 C5 C7 16.0 14.0 80.2 83.4
950 5 60 D5 D7 16.0 16.0 80.3 82.5
950 5 60 D5 D7 16.0 16.0 80.7 84.7
950 5 90 A14 B26 16.0 16.0 80.3 84.2
950 5 90 A14 B26 14.0 16.0 80.3 81.8

n = 14 14 14 14
Avg 15.5 14.9 78.7 78.9

Z dev2 7.5 19.72 101.58 1020.61
Std dev .76 1.23 2.80 8.86

Student's t = 1.55

Ii
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TABLE 4, APPENDIX III

MA39-EFFECT OF GREEN DENSITY ON TRANSVERSE TENSILE PROPERTIES

.Preheat Hot Coin Forging Code No. T.S. (ksi) ... S. (ksi)
Temp. Time Press. Green Density Green Density Green Density
( 0 F) (Hr) (ksi) 70% 80% 70% 80% 70% 80%

900 1 90 E6 E8 73.2, 71.5 63.0 59.6
900 1 90 E6 D8 74.1 70.2 64.2 58.9
900 20 90 H6 H8 72.0 71.1 62.1 61.9
900 20 90 H6 H8 -- 1 71.3 61.1 61.4

1000 1 90 E7 E9 71.6 73.4 60.8 62.6
1000 1 90 E7 E9 72.6 73.5 61.8 62.4
1000 20 90 H7 H9 73.1 72.4 63.7 60.9
1000 20 90 H7 H9 73.7 72.3 63.8 61.4
950 5 30 C5 C7 68.8 70.0 60.2 58.7
950 5 30 C5 C7 69.6 -- 1 61.1 64.8
950 5 60 D5 D7 70.4 71.3 61.4 61.2
950 5 60 D5 D7 71.9 -- 62.0 60.7
950 5 90 A14 B26 70.4 69.0 59.7 61.5 H
950 5 90 A14 B26 69.0 72.4 59.0 62.0 [I

n= 13 12 14 14
Avg 71.6 71.5 61.7 61.3

Z deV2  38.21 20.32 31.81 32.0
Std dev 11.78 1.36 1.56 1.57

Notes (1) Invalid Parameter. I

ii
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TABLE 4, APPENDIX III

11 MA39-EFFECT OF GREEN DENSITY ON TRANSVERSE TENSILE PROPERTIES

Preheat Hot Coin Forging Code No. El (%) NTS(ksi)
Temp. Time Press. Green Density Green Density Green Density
('F) (Hr) (ksi) 70% 80% 70% 80% 70% 80%

* 900 1 90 E6 E8 10.0 12.0 59.0 65.3
900 1 90 E6 E8 6.0 10.0 49.8 52.8

H 900 20 90 H6 H8 12.0 6.0 28.5 41.2
900 20 90 H6 H8 -- 6.0 29.3 41.0

1000 1 90 E7 E9 10.0 8.0 44.3 52.5
1000 1 90 E7 E9 10.0 8.0 45.2 53.3
1000 20 90 H7 H9 8.0 9.0 39.7 53.3
1000 20 90 H7 H9 8.0 9.0 43.2 47.8
950 5 30 C5 C7 4.0 8.0 47.2 47.2
950 5 30 C5 C7 4.0 -- 43.4 42.4
950 5 60 D5 D7 4.0 10.0 51.0 44.1
950 5 60 D5 D7 4.0 -- 1 46.8 42.8

950 5 90 A14 B26 10.0 4.0 44.2 43.6
950 5 90 A14 B26 4.0 6.0 52.5 48.0

H n = 13 12 14 14

Avg 7.2 8.0 44.6 48.2
Z dev 2  108.31 54.00 870.7 586.88

Std dev 3.00 2.21 8.18 6.72
Student's t = .75 1.27

P = <80% <90%

Notes: (1) Invalid Parameter.


